MOEA/D-HH: A Hyper-Heuristic for Multi-objective Problems
نویسندگان
چکیده
Hyper-Heuristics is a high-level methodology for selection or automatic generation of heuristics for solving complex problems. Despite the hyper-heuristics success, there is still only a few multi-objective hyper-heuristics. Our approach, MOEA/D-HH, is a multi-objective selection hyper-heuristic that expands the MOEA/D framework. It uses an innovative adaptive choice function proposed in this work to determine the low level heuristic (Differential Evolution mutation strategy) that should be applied to each individual during a MOEA/D execution. We tested MOEA/D-HH in a well established set of 10 instances from the CEC 2009 MOEA Competition. MOEA/D-HH is compared with some important multi-objective optimization algorithms and the results obtained are promising.
منابع مشابه
A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملArtificial Mutation inspired Hyper-heuristic for Runtime Usage of Multi-objective Algorithms
In the last years, multi-objective evolutionary algorithms (MOEA) have been applied to different software engineering problems where many conflicting objectives have to be optimized simultaneously. In theory, evolutionary algorithms feature a nice property for runtime optimization as they can provide a solution in any execution time. In practice, based on a Darwinian inspired natural selection,...
متن کاملUsing ACO in MOEA/D for Multiobjective Combinatorial Optimization
Combining ant colony optimization (ACO) and multiobjective evolutionary algorithm based on decomposition (MOEA/D), this paper proposes a multiobjective evolutionary algorithm, MOEA/D-ACO. Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes an multiobjective optimization problem into a number of single objective optimization problems. Each ant (i.e. agent) is responsible for solving on...
متن کاملMultiobjective Combinatorial Optimization by Using Decomposition and Ant Colony
Combining ant colony optimization (ACO) and multiobjective evolutionary algorithm based on decomposition (MOEA/D), this paper proposes a multiobjective evolutionary algorithm, MOEA/D-ACO. Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes a multiobjective optimization problem into a number of single objective optimization problems. Each ant (i.e. agent) is responsible for solving one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015